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Abstract

It is well known that in a network with arbitrary
(convex) latency functions that are a function of edge
traffic, the worst-case ratio, over all inputs, of the
system delay caused due to selfish behavior versus the
system delay of the optimal centralized solution may
be unbounded even if the system consists of only two
parallel links. This ratio is called the price of anarchy
(PoA). In this paper, we investigate ways by which one
can reduce the performance degradation due to selfish
behavior. We investigate two primary methods (a)
Stackelberg routing strategies, where a central authority,
e.g., network manager, controls a fixed fraction of the
flow, and can route this flow in any desired way so as
to influence the flow of selfish users; and (b) network
tolls, where tolls are imposed on the edges to modify the
latencies of the edges, and thereby influence the induced
Nash equilibrium. We obtain results demonstrating the
effectiveness of both Stackelberg strategies and tolls in
controlling the price of anarchy.

For Stackelberg strategies, we obtain the first re-
sults for nonatomic routing in graphs more general than
parallel-link graphs, and strengthen existing results for
parallel-link graphs. (i) In series-parallel graphs, we
show that Stackelberg routing reduces the PoA to a
constant (depending on the fraction of flow controlled).
(ii) For general graphs, we obtain latency-class specific
bounds on the PoA with Stackelberg routing, which give
a continuous trade-off between the fraction of flow con-
trolled and the price of anarchy. (iii) In parallel-link
graphs, we show that for any given class L of latency
functions, Stackelberg routing reduces the PoA to at
most α + (1− α) · ρ(L), where α is the fraction of flow
controlled and ρ(L) is the PoA of class L (when α = 0).

For network tolls, motivated by the known strong
results for nonatomic games, we consider the more
general setting of atomic splittable routing games. We
show that tolls inducing an optimal flow always exist,
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even for general asymmetric games with heterogeneous
users, and can be computed efficiently by solving a
convex program. Furthermore, we give a complete
characterization of flows that can be induced via tolls.
These are the first results on the effectiveness of tolls
for atomic splittable games.

1 Introduction

We consider the problem of optimizing the performance
of a network in the presence of selfish, noncooperative,
uncoordinated traffic (users). A popular way of model-
ing such selfish behavior is by means of a noncooperative
game played between the selfish agents, and by viewing
the equilibria, typically Nash equilibria, of the game as
outcomes of selfish behavior. It is well known that self-
ish behavior and the lack of coordination often leads
to a degradation in performance quality, and in recent
years there has been considerable interest and progress
in quantifying the performance loss in various settings
in terms of the price of anarchy of the corresponding in-
duced game; see e.g., [18, 26, 23]. The price of anarchy
(abbreviated PoA) of a game is the ratio between the
cost of the Nash equilibrium solution (i.e., the outcome
of selfish behavior) and the socially optimum solution.
In this paper, we investigate ways of reducing the price
of anarchy in network congestion games (which we also
refer to as network routing games).

A network routing game is determined by a directed
network G = (V,E) with nonnegative, monotone nonde-
creasing latency or delay functions `e(x) on the edges,
a source and sink s, t ∈ V , and given volume of flow
that needs to be routed from s to t, which is split into
many users. To analyze selfish behavior, we focus on
the concept of a Nash equilibrium, which is a combina-
tion of users’ strategies where no individual user can re-
duce her cost by changing her strategy (when the other
users’ strategies stay fixed). In the context of conges-
tion games, the cost of a user is measured in terms of
the congestion experienced by it, and the system cost is
the aggregate of the user costs.

In the nonatomic routing game, there are an infi-
nite number of users, each controlling an infinitesimal
amount of flow (traffic). The strategy space of each user
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is the collection of directed paths in G from s to t. The
cost associated with selecting a path P is the delay of
P , which is the sum of the delays of the edges in P . In
the atomic, splittable routing game, there are a finite
number of users. Each user i controls a certain amount
of flow Di > 0, and her strategy consists of choosing
a feasible fractional (i.e., splittable) flow from s to t of
volume Di. The cost associated with flow fi is the total
delay incurred in routing along fi, which is the sum over
all edges e of the flow fi,e times the delay of edge e.

The system cost of a flow f is the total latency or
delay experienced by all the users, defined by C(f) =∑

ε∈E fe`e(fe). The price of anarchy of a game is
the worst possible ratio of C(fNE )/C(o), where fNE

if a flow at a Nash equilibrium, and o is a system-
optimal flow, i.e., it minimizes C(f). It is known that
with arbitrary (convex) latency functions, the price of
anarchy may be unbounded even if G consists of only
two parallel s-t links. Thus it becomes important to
consider ways by which one can reduce the performance
degradation due to selfish behavior and bound the price
of anarchy. We investigate two primary methods for
reducing the price of anarchy.
(a) Stackelberg routing strategies. A central
authority, such as the network manager or router,
controls a fixed fraction of the flow and routes this flow
in any desired way, then the remaining traffic routes
itself selfishly. The goal is to find a Stackelberg strategy,
that is, a routing of the centrally controlled traffic, that
minimizes the cost of the resulting flow (which includes
the Stackelberg flow).

As mentioned in [24], an appealing aspect of Stack-
elberg strategies is their simplicity: unlike other promi-
nent approaches such as, for example, algorithmic mech-
anism design or pricing policies, no communication is
required between the system and the selfish users, and
no notion of money is needed. Moreover, despite this
simplicity, various situations that arise in the design of
communication networks can be modeled by the above
setting. For example, Korilis et al. [17] motivate this
problem from its applicability in virtual private network
design, where the system must allocate bandwidth on
preassigned virtual paths so as to handle ongoing and fu-
ture traffic; the bandwidth assigned on the virtual paths
can be viewed as centrally controlled traffic, while the
individual users of the network (who may come and go)
may be treated as selfish traffic.
(b) Network tolls. A central authority imposes
tolls (or taxes) on the network edges. The net latency
experienced by user i on an edge e with toll τe is given
by ˜̀

i,e(x) = γi`e(x) + τe, where the quantity γi ≥ 0
indicates the sensitivity of user i to delay. (In the
nonatomic game, one can consider the setting where

the γis form a continuum.) The goal is to compute tolls
on the edges such that the resulting Nash flow (with
respect to the modified latency functions ˜̀

e,i(x)) has
low cost (compared to the social optimum).

Network tolls are a classical means of congestion
control. They were proposed way back by Pigou [22]
in 1920, and various results have demonstrated the
effectiveness of tolls for nonatomic routing games [2,
10, 6, 11, 15, 29] by showing that one can always induce
an optimal flow via tolls (thus reducing the price of
anarchy to 1). Given these positive results, it is natural
to investigate whether tolls can help reduce the price
of anarchy in more general settings, such as atomic
splittable games. Moreover, tolls for atomic traffic can
be important in areas such as routing of Internet traffic,
where there could be relatively few domains (Google,
Yahoo, etc.) that generate a large fraction of the traffic.

Our results. We obtain results demonstrating the
effectiveness of both Stackelberg strategies and tolls in
controlling the price of anarchy. For Stackelberg strate-
gies, we obtain the first results for nonatomic routing
in graphs that are more general than (s, t) parallel-link
graphs (Section 3), and we strengthen existing results
for parallel-link graphs. We show that in series-parallel
graphs, for any α ∈ [0, 1], and arbitrary latency func-
tions, one can efficiently compute a Stackelberg strategy
controlling α-fraction of flow that reduces the price of
anarchy to 1

α +1. This underlines the power of Stackel-
berg strategies in such settings. (Note that without any
central control, the PoA with arbitrary latency func-
tions is unbounded even for parallel-link graphs.) Pre-
viously, such results were known only for parallel-link
graphs, due to Roughgarden [24].

For general graphs, we obtain latency-class specific
bounds on the price of anarchy with Stackelberg rout-
ing. Our bounds give a continuous trade-off between
the fraction of flow controlled and the price of anarchy.
The trade-off function is a decreasing function of α and
varies between the worst-case PoA when α = 0, and 1
when α = 1. For linear latencies, we describe an explicit
trade-off curve showing how the PoA varies with α.

We obtain stronger results for parallel-link graphs.
We show that for any given class of latency functions,
the price of anarchy (of that class) can always be
improved by Stackelberg routing. More precisely, let
ρ(L) denote the PoA of a class L of latency functions
(without controlling any flow). We show that by
controlling an α-fraction of flow one can reduce the price
of anarchy to α + (1 − α) · ρ(L). This yields a nice,
smooth trade-off, and shows that Stackelberg strategies
are especially effective in parallel-link graphs.

In Section 4, we consider the use of tolls to reduce
the PoA. As mentioned earlier, various results have
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affirmed the usefulness of tolls in nonatomic routing
games, and the power of tolls in this setting is relatively
well understood. Motivated by these positive results, we
therefore investigate the more general setting of atomic
splittable games. We show that there always exist tolls
that induce an optimal flow as a Nash flow in the routing
game with tolls. This is true even for asymmetric
atomic splittable routing games, where different users
may have different source-sink pairs. We call such
tolls optimal tolls and show that they can be computed
efficiently by solving a convex program. Furthermore,
we give a complete characterization of flows that can
be induced (as some Nash equilibrium) via tolls (Nash
flows in atomic splittable instances are not known to
be unique). These results also extend to the setting
of general atomic splittable congestion games. To the
best of our knowledge, these are the first results on
the effectiveness of tolls for atomic splittable traffic.
Previously, except in some restricted cases, even the
existence of optimal tolls was not known.

Related work. The nonatomic network routing
game was originally proposed in the seminal paper of
Wardrop [28] as a way of thinking about road traffic.
The notion of equilibrium introduced in [28] coincides
with the Nash equilibrium concept in the nonatomic
routing game.

Koutsoupias and Papadimitriou [18] introduced the
idea of evaluating the performance degradation of a self-
ish game by considering its worst-case possible Nash
Equilibrium. Using the terminology defined above,
they considered atomic unsplittable routing games on
parallel-link graphs with linear latency functions un-
der the maximum user cost objective (as opposed to
the sum of user costs). Papadimitriou [21] later coined
the term “price of anarchy” to describe the ratio be-
tween the system-performance of the worst-case Nash
equilibrium equilibrium, and the system-performance
of the best centrally-enforced solution. Price of anar-
chy results for nonatomic routing games were first ob-
tained by Roughgarden and Tardos [26], who obtained
tight bounds for linear latency functions. Subsequently,
Roughgarden [25] (see also [23]) gave tight bounds for
many classes of latency functions.

Much less is known about atomic routing games.
For atomic splittable routing, very recently, Cominetti,
Correa, and Stier-Moses [7] presented various bounds
on the price of anarchy. They also showed that in a
symmetric atomic game, that is, when all users control
the same amount of flow and share the same source
and sink, the cost of a Nash equilibrium is at most
the cost of the Nash equilibrium in the corresponding
nonatomic game. Hayrapetyan, Tardos and Wexler [13]
proved such a result for parallel-link graphs, even when

the users control different amounts of flow. Thus, in
these settings, the PoA of the atomic splittable game is
at most the PoA of the corresponding nonatomic game.
Awerbuch, Azar and Epstein [1], and Christodoulou
and Koutsoupias [4] provide PoA bounds for atomic,
unsplittable routing games, and show that these can
be worse than the PoA bounds in the nonatomic and
atomic splittable setting.

Korilis, Lazar and Orda [17] first considered the
use of Stackelberg strategies as a means of improving
system performance. The considered atomic, unsplit-
table routing games in graphs with s-t parallel links and
latency functions of the form `e(x) = 1

ue−x , and ob-
tained necessary and sufficient conditions (e.g., on the
amount of flow that is centrally controlled) for the ex-
istence of a Stackelberg strategy that induces the op-
timal flow. Subsequently, Roughgarden [24] considered
the question of improving price of anarchy bounds via
Stackelberg strategies. The work of [24] also considered
parallel-link graphs, and showed that for arbitrary la-
tency functions, and any α ∈ [0, 1], one can compute
a Stackelberg strategy that reduces the price of anar-
chy to at most 1

α . Given that the price of anarchy is
unbounded in such graphs, the benefit of Stackelberg
strategies is particularly striking in this setting. Kumar
and Marathe [19] considered the algorithmic problem
of computing the best Stackelberg strategy and gave a
PTAS for this problem on parallel-link graphs.

Recently, there has been a flurry of work related
to Stackelberg routing. Kaporis and Spirakis [14] show
that one can efficiently compute the smallest α such
that an optimal flow can be induced by controlling α-
fraction of flow. Sharma and Williamson [27] consider
the related question of finding the smallest α for which
the cost of the Nash flow can be improved, for parallel-
link instances with linear latencies. Independent of our
work, Karakostas and Kolliopoulos [16] have obtained
PoA bounds for multicommodity nonatomic games on
general graphs with linear latency functions, using the
LLF and Scale Stackelberg strategies proposed in [24]
(which we also use and analyze). Correa and Stier-
Moses [8] have also independently obtained some results
on Stackelberg routing.

The use of tolls as a means for congestion control
was proposed way back by Pigou [22] in 1920. For
nonatomic users with identical trade-offs for delay ver-
sus toll, Pigou [22], and more formally Beckman et
al. [2], showed that marginal cost tolls induce the op-
timal flow. Much recent work has been directed to-
ward the setting of heterogeneous users, where differ-
ent users may have distinct trade-offs for delay ver-
sus toll, In this setting, it turns out that one can ex-
ploit linear-programming duality to obtain tolls that
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induce an optimal flow, even for multicommodity traf-
fic [10, 6, 5, 11, 15, 29].

Questions regarding the efficacy of tolls for atomic
users have only been considered very recently. Cara-
giannis et al. [3] considered the atomic unsplittable case
in parallel-link graphs with linear latency functions. In
contrast to our results about the existence of optimal
tolls, they showed that optimal tolls need not always ex-
ist in the unsplittable case, and gave various lower and
upper bounds on the PoA achievable through tolls. We
are not aware of any previous work on tolls for atomic
splittable traffic. The only known results are those that
follow from the above-mentioned results of Hayrapetyan
et al. [13] and Cominetti et al. [7], which show that
cost of an atomic Nash flow is bounded by that of the
nonatomic Nash flow; their results imply that optimal
tolls exist for parallel-link graphs, and symmetric users
on general graphs.

2 Preliminaries

Let G = (V,E) be the underlying directed graph
endowed with nonnegative, monotone nondecreasing
latency functions {`e(x)} on the edges, and a source
and sink s, t ∈ V . We will assume that each `e(x) is
continuous. Without loss of generality, we can scale the
problem so that the total volume of traffic to be routed
from s to t is 1 (i.e., if D is the total flow volume,
we can equivalently work with the latency functions
˜̀
e(x) = `e(Dx)). We use C(f) to denote the cost of

a flow f , which is the total latency experienced by the
flow, defined by C(f) =

∑
e fe`e(fe). Let o = {oe}

denote an optimal flow, and OPT = C(o) be the cost
of this flow. We use (G, `) to denote an instance (with
total flow volume 1) in the corresponding nonatomic
routing game, and (G, k, {Di}, `) to denote an atomic
(splittable) routing game with k users, where user i
controls Di ≥ 0 units of flow (so

∑
i Di = 1). Let

P = Pst be the set of all simple s-t paths. The terms
“latency”, and “cost” of an edge e refer to the quantities
`e(fe), and fe`e(fe) respectively. For a path P , we will
sometimes use `P (f) and cP (f) to denote respectively
the total latency and cost of the edges on path P under
the flow f . Given a flow f and path P , we use fP as a
shorthand for mine∈P fe.

A Nash equilibrium is a combination of users’
strategies, such that no single user can profit by de-
viating from his strategy (when the other users’ strate-
gies stay fixed). A flow fNE is a Nash flow for the
nonatomic routing game (G, `), if it is feasible, and for
every P, P ′ ∈ P with fNE

P > 0, `P (fNE ) ≤ `P ′(fNE ).
Thus, in a Nash flow fNE , all flow paths have the
same common latency L, that is, if fNE

P > 0, then
`P (fNE ) = L = minP∈P `P (fNE ). A flow profile

(f1, . . . , fk) is a Nash flow for the atomic splittable rout-
ing game (G, k, {Di}, `), if for each user i = 1, . . . , k, fi

is a feasible flow for i, and fi minimizes the quantity∑
e fi,e`e(fe) where f is the flow

∑
j fj . Let `′(x) de-

note the derivative of `(.) at x. The following basic facts
about optimal and Nash flows will be useful (details and
proofs may be found, for example, in [23]).

(a) If the function x`e(x) is convex for each e ∈ E, then
an optimal flow can be computed in polynomial
time (up to an arbitrarily small additive error).

(b) Every nonatomic and atomic routing game admits
an acyclic Nash flow.

(c) Optimal flows, and Nash flows for nonatomic in-
stances, are essentially unique: if o and õ are two
optimal flows, and fNE , f̃NE are two nonatomic
Nash flows, then `e(oe) = `e(õe), and `e(fNE

e ) =
`e(f̃NE

e ) for every edge e.

(d) A flow (f1, . . . , fk) is a Nash equilibrium for an
atomic instance (G, k, {Di}, `) iff for each user i,
and any paths P, P ′ ∈ P with fi,P > 0, we
have

∑
e∈P (`e(fe) + fi,e`

′
e(fe)) ≤

∑
e∈P ′(`e(fe) +

fi,e`
′
e(fe)), where f =

∑
j fj .

For a latency function `(x), define ρ(`) =
sup0≤y≤x

x`(x)
y`(y)+(x−y)`(x) . Let ρ(L) denote the worst-

case price of anarchy over all nonatomic instances (G, `),
where each function `e(x) lies in class L. Rough-
garden [25] showed that ρ(L) is precisely sup`∈L ρ(`).
Correa, Schulz and Stier-Moses [9] gave an alterna-
tive proof of this result, using the quantity β(`) =
sup0≤y≤x

y(`(x)−`(y))
x`(x) . Note that β(`) = 1 − 1

ρ(`) , and
hence β(L) = sup`∈L β(`) = 1− 1

ρ(L) .

3 Stackelberg strategies for nonatomic routing
games

We now consider Stackelberg routing for nonatomic
routing games and obtain bounds on the price of an-
archy. Throughout, we use α to denote the fraction of
traffic controlled by the central authority. We first con-
sider series-parallel graphs with arbitrary latency func-
tions, in Section 3.1, and prove that the cost of the
flow induced by our Stackelberg strategy is at most
a constant (depending on α) times the optimum. In
Section 3.2, we focus on obtaining PoA bounds that
depend on the latency functions in the instance. We
first show that for any “reasonable” Stackelberg strat-
egy, the price of anarchy never increases (as compared
to the PoA without any flow-control) due to Stackelberg
routing. Although this is a highly intuitive result, one
should note that there are various examples, most no-
tably the Braess paradox, where measures taken in the
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interest of improving overall performance actually end
up hurting the system performance, due to the pres-
ence of selfish users. We use this to obtain bounds for
any given latency class that quantify the trade-off be-
tween the fraction of flow controlled and the PoA. For
linear latency functions, we obtain an explicit function
describing the variation of the PoA with the fraction
of flow controlled. In Section 3.3, we consider parallel-
link networks and present various improved results. We
show that for any class of latency functions L with PoA
ρ(L), by controlling α-fraction of flow, one can reduce
the PoA to r(ρ(L), α) = α + (1 − α)ρ(L), thus obtain-
ing a nice, smooth trade-off curve. In Section 3.4, we
consider some extensions. We argue that some of the
latency-class specific bounds of Section 3.2 (those ob-
tained for the Scale strategy) also extend to multicom-
modity nonatomic games. Finally, we show that the
combination of Stackelberg strategies and tolls can yield
benefits that are not achievable by either in isolation.
We observe that for any instance (G, `), by using our
Stackelberg strategy in conjunction with tolls, we can
enforce an optimal flow where the maximum toll paid by
a user along a flow path is bounded (in terms of OPT ).

Throughout, we use g to denote the Stackelberg
flow, and h to denote the induced Nash flow, that is,
h is the Nash flow with respect to the modified latency
functions ˜̀

e(x) = `e(ge+x). Since the total flow volume
is 1 (due to scaling), g and h are s-t flows of volume α
and 1 − α respectively. We use the terms Stackelberg
flow and Stackelberg strategy interchangeably. We will
assume that xe`e(x) is convex for each e, so that an
optimal flow can be computed in polynomial time.

We use the following two Stackelberg strategies to
obtain our results:

(a) The Largest-Latency-First (LLF) strategy.
This consists of the following: compute an op-
timal flow o, and repeatedly saturate the paths
used by o starting from the largest-latency path
until we have routed α units of flow. More pre-
cisely, we set ge = 0 for all edges e initially;
while α is positive, we repeatedly find a path P
such that `P (o) = maxP :(o−g)P >0 `P (o), and set
ge ← ge + min(α, (o − g)P ) for all e ∈ P , and
α = max(0, α − (o − g)P ). Since o is an acyclic
flow, the flow g can be computed in polynomial
time from the flow o. Clearly we have ge ≤ oe for
all edges e.

This is a generalization of the Largest-Latency-
First strategy given in [24] for parallel-link graphs,
therefore we adopt the same terminology.

(b) The Scale strategy. In this strategy, we set
ge = α · oe on all edges, that is, we simply scale

the optimal flow. This strategy was also mentioned
in [24] in the context of parallel-link graphs, but no
PoA bounds were obtained using this strategy. We
use this strategy in Section 3.2, to obtain latency-
class specific PoA bounds for general graphs.

3.1 Series-parallel graphs We show that for di-
rected series-parallel (sepa) graphs with end points (or
terminals) s and t, the PoA under the LLF strategy is
at most 1

α + 1.

Definition 3.1. Directed series-parallel graphs with
end points s and t are defined inductively as follows.
A basic sepa graph is a directed edge (s, t). Given two
sepa graphs G1 and G2 with end points s1, t1, and s2, t2
respectively, one can create a new sepa graph G as fol-
lows. In a series combination, terminal s2 is identi-
fied with terminal t1 to create graph G with terminals
s = s1, t = t2; in a parallel combination, terminal s1 is
identified with terminal s2, and terminal t1 is identified
with t2, to obtain the new terminals s = s1 = s2 and
t = t1 = t2. In both cases, EG = EG1 ∪ EG2 .

We will use the following properties of series-parallel
graphs, which are easily proved by induction on the
series-parallel structure of the graph.

Claim 3.1. Consider a sepa graph with end points s
and t.

1. Let f , f ′ be two s-t flows routing D, D′ units of flow
respectively, with D ≥ D′, D > 0. Then, there is
some s-t path P such that fP > 0 and f ′e ≤ fe for
every e ∈ P .

2. Let P be an s-t path, f be an s-t flow, and e1, . . . , ek

be the subset of edges of P for which fe > 0.
Then there is a path P ′ containing e1, . . . , ek with
fP ′ > 0.

We will use part (i) of Claim 3.1 (taking f = o− g
and f ′ = h) to obtain a sharp bound on the latency
of the Nash flow h induced by LLF. Part (ii) of the
claim will allow us to bound the increase in latency of
a Stackelberg flow-path by at most the Nash latency.
This will yield a constant PoA bound for sepa graphs.

Theorem 3.1. In series-parallel graphs, the LLF strat-
egy induces a flow of cost at most

(
1
α + 1) ·OPT.

Proof. We first bound the cost of the Nash flow h.
Applying part (i) of Claim 3.1 with f = o − g and
f ′ = h, yields a path Q with (o − g)Q > 0, and
ge + he ≤ oe for all e ∈ Q. The Nash latency is
at most the latency of path Q, which is at most Lg.
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Hence,
∑

e he`e(ge + he) ≤ (1− α) · Lg. Now we bound∑
e ge`e(ge + he). Consider any path P with gP > 0.

Applying part (ii) of Claim 3.1 with path P and the
flow h, shows that there exists a path P ′ with hP ′ > 0
that contains all the edges of P with he > 0. The
combined latency of all these edges is at most `P ′(h+g),
which is at most Lg by the above bound on the Nash
latency. Thus, the total latency of path P is at most∑

e∈P :he=0 `e(ge) + Lg, implying that the cost of g is at
most α ·Lg +OPT . So the total cost of g +h is at most
Lg + OPT ≤

(
1
α + 1

)
·OPT .

3.2 PoA bounds depending on the class of
latency functions We now obtain bounds on the PoA
that depend on the latency functions in the instance.
Let (G, `) be a nonatomic instance, where each `e(x)
lies in some class L of latency functions. Recall that
the PoA of class L is given by ρ(L) = sup`∈L ρ(`),
where ρ(`) = sup0≤y≤x

x`(x)
y`(y)+(x−y)`(x) . Recall also that

β(`) = sup0≤y≤x
y(`(x)−`(y))

x`(x) = 1 − 1
ρ(`) , and β(L) =

sup`∈L β(`) = 1− 1
ρ(L) . We drop the argument L below

and use β and ρ to denote β(L) and ρ(L) respectively.
In this section, we will also consider the Stackelberg
strategy Scale defined earlier.

We first prove in Lemma 3.1 that any Stackelberg
flow with ge ≤ oe on all edges induces a flow of cost
at most ρ · OPT , where the cost of the Nash flow is at
most ρ ·

∑
e(oe − ge)`e(oe). We then use these bounds

to prove bounds rLLF(ρ;α) and rSc(ρ;α) on the price of
anarchy under the LLF and Scale strategies respectively,
which vary between ρ and 1 as α goes from 0 to 1.
We simplify the expression rSc(ρ;α) (which yields a
stronger bound) for polynomial latency functions, and
obtain a closed-form expression for linear latencies.
Independently, Correa and Stier-Moses [8] have also
obtained Lemma 3.1.

Lemma 3.1. Consider a Stackelberg flow satisfying
ge ≤ oe for all e. Then, (i) C(g + h) =

∑
e(ge +

he)`e(ge + he) ≤ ρ · OPT, and (ii)
∑

e he`e(ge + he) ≤
ρ

∑
e(oe − ge)`e(oe).

Proof. We use the proof approach of Correa et al. [9].
The Nash flow h satisfies the variational inequality∑

e(he− fe)`e(ge + he) ≤ 0 for any s-t flow f of volume
1 − α. Taking f = o − g, which is a valid flow, we get
that

∑
e(ge + he)`e(ge + he) ≤

∑
e oe`e(ge + he). We

write oe`e(ge +he) = oe`e(oe)+oe

(
`e(ge +he)− `e(oe)

)
.

Using the definition of β, the last term is at most
β(ge + he)`e(ge + he) (this holds even if oe > ge + he).
So (1− β)

∑
e(ge + he)`e(ge + he) ≤ OPT . This proves

part (i), since ρ = (1− β)−1.
Let ˜̀

e(x) = `e(x + ge). As in (i), we start with

the inequality
∑

e he
˜̀
e(he) ≤

∑
e(oe − ge)˜̀e(he). We

have (oe − ge)˜̀e(he) = (oe − ge)˜̀e(oe − ge) + (oe −
ge)

(˜̀
e(he) − ˜̀

e(oe − ge)
)
, and the last term is at most

β(˜̀) ·he
˜̀
e(he). Finally, note that β(˜̀) ≤ β, so we obtain

that (1 − β) ·
∑

e he`e(ge + he) ≤
∑

e(oe − ge)`e(oe),
proving part (ii).

Lemma 3.1 shows that if ge ≤ oe, then the quanti-
ties

∑
e ge`e(oe), and

∑
e he`e(ge + he) are bounded in

terms of OPT . Our goal will be to bound ge`e(ge+he) in
terms of ge`e(oe) and he`e(ge + he), and thereby bound
C(g + h). For example, for linear latencies, we always
have ge`e(ge + he) ≤ ge`e(ge) + he`e(ge + he), so if g is
the LLF strategy this gives the (weak) bound C(g+h) ≤(
α+2ρ(1−α)

)
·OPT . Let gLLF denote the flow due to the

LLF strategy, and gSc = α · o denote the flow due to the
Scale strategy. In general, for either strategy, there could
be various combinations (λ, κ) such that ge`e(ge +he) ≤
λ · ge`e(ge) + κ · he`e(ge + he), and we would like to ob-
tain the tightest bound. To this end, for any b ≥ 0, we
define cLLF(L; b) = sup`∈L supx,y≥0

(x−b·y)`(x+y)
x`(x) . This

definition is tailored so that with x = ge, y = he, we get
ge`e(ge+he) ≤ cLLF(L; b)·ge`e(ge)+b·he`e(ge+he). De-
fine cSc(L;α, b) = sup`∈L supx,y≥0

(αx−b·y)`(αx+y)
αx`(x) . For

any b ≥ 0, we will obtain a bound on the PoA under
gLLF and gSc in terms of b, ρ(L), and cLLF (for gLLF)
or cSc (for gSc); we will then select the value of b that
minimizes this ratio. We drop the L in cLLF and cSc in
the sequel. Note that both cLLF and cSc are decreasing
functions of b. Also cSc(α, b) ≤ cLLF(b) for every α (since
0 ≤ α ≤ 1), so our PoA bound for the Scale strategy will
be better than that for LLF. But, we include an analysis
of LLF since it may be of independent interest.

Theorem 3.2. (i) The PoA under the Scale strategy is
at most

rSc(ρ;α) = min
{
ρ, inf

b≥0

(
α · cSc(α, b) + ρ(1− α)(1 + b)

)}
.

(ii) The PoA under the LLF strategy is at most

rLLF(ρ;α) = min
{
ρ, inf

b≥0

(
α · cLLF(b) + ρ(1− α)(1 + b)

)}
,

which is a decreasing function of α. The functions rLLF

and rSc take values ρ and 1 at α = 0 and α = 1
respectively.

Proof. Lemma 3.1 shows that the PoA is at most ρ.
The cost of g + h is C(g + h) =

∑
e ge`e(ge + he) +∑

e he`e(ge + he). Taking g = gSc = α · o, and using the
definition of cSc(α, b), we get that for any b ≥ 0,
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∑
e

gSc
e `e(gSc

e + he) ≤ cSc(α, b)
∑

e

gSc
e `e(oe)+

b
∑

e

he`e(gSc
e + he).

Let C1 := C(gSc +h). So C1 ≤ α · cSc(α, b) ·OPT +(b+
1)

∑
e he`e(gSc

e + he). Using part (ii) of Lemma 3.1 to
bound

∑
e he`e(gSc

e +he), we get that C1 ≤
(
α·cSc(α, b)+

(1 − α)(b + 1)ρ
)
· OPT for every b ≥ 0. Thus the PoA

is at most rSc(ρ;α) = min{ρ, infb≥0

(
α · c(α, b) + (1 −

α)(b+1)ρ
)
}. Clearly rSc(ρ; 0) = ρ. It is easy to see that

limb→∞ c(1, b) = 1, which gives rSc(ρ; 1) = 1.
Similarly taking g = gLLF, we get that∑
e

gLLF
e `e(gLLF

e + he) ≤ cLLF(b)
∑

e

gLLF
e `e(gLLF

e )+

b
∑

e

he`e(gLLF
e + he).

Thus, for every b ≥ 0, C2 := C(gLLF + h) ≤ cLLF(b) ·
A + (b + 1)ρ · B, by Lemma 3.1 part (ii), where
A =

∑
e gLLF

e `e(oe), and B =
∑

e(oe − gLLF
e )`e(oe).

Let A = θ · OPT , so we have θ ≥ α. Thus,
in the worst case we obtain the bound C2/OPT ≤
min{ρ, maxθ∈[α,1] infb≥0(θ · cLLF(b) + (1 − θ)(b + 1)ρ)}.
The rest of the proof is devoted to showing that the
above expression can be simplified to obtain the bound
rSc(ρ;α), and proving the properties of rSc stated in
the theorem. This is somewhat technical, and we
only sketch the main ideas; the details are relatively
straightforward to fill in.

If α = 1, then θ = 1, and if θ = 1, the infimum
is 1 since limb→∞ cLLF(b) = 1, so the bound in the
theorem clearly holds. So let α < 1. One can show
that cLLF(b) is a convex function. So for any θ < 1,
θ · cLLF(b) + (1 − θ)(b + 1)ρ is minimized at the unique
value bθ ≥ 0 satisfying c′LLF(bθ) = ρ(1 − 1/θ). So bθ

increases with θ. Let ϕ(θ) = θ·cLLF(bθ)+(1−θ)(bθ+1)ρ.
Let θ∗ ∈ [0, 1] be such that cLLF(bθ∗) = (bθ∗ + 1)ρ. One
can show that ϕ′(θ) ≤ 0 for θ ≥ θ∗, and ϕ′(θ) ≥ 0 for
θ ≤ θ∗. Thus, over the range [α, 1], ϕ(θ) is maximized
at θ = max(α, θ∗). So if α ≥ θ∗, then we get the bound
in the theorem. Observe that for α < θ∗, bα < bθ∗ ,
so cLLF(bα) > (bα + 1)ρ ≥ ρ and ϕ(α) > ρ, and the
bound still applies. Thus, in both cases we can bound
the PoA by min{ρ, ϕ(α)} = rSc(ρ;α). For α < θ∗,
the value of rLLF(ρ;α) stays fixed at ρ; for α ≥ θ∗, we
have rLLF(ρ;α) = min{ρ, ϕ(α)}, which decreases as α
increases. Hence, rLLF decreases with α. Finally, since
limb→∞ cLLF(b) = 1, we have rLLF(ρ; 1) = 1.

Let Lk be the class of polynomial latency functions
with degree (at most) k. For the class Lk, we can

simplify the expression above and obtain an upper
bound on rSc(α, b). For linear latencies, we can further
simplify this bound and obtain a closed-form expression.
Our bound for linear latencies is weaker than the bound
obtained by Karakostas and Kolliopoulos [16], but it is
obtained through a general technique that can be used
to compute PoA bounds for other latency classes as well.

Theorem 3.3. The PoA for the class Lk under the
Scale strategy is at most

r(k;α) = α + ρ(Lk)(1− α)
(
1 + b(k, α)

)
,

where b(k, α) ≥ 0 is the unique value such that
αk

( b(k,α)+1
k+1

)k+1 =
( b(k,α)

k

)k. For linear latency func-
tions, this simplifies to yield the bound r(1;α) = α +
4
3 (1 − α) · 2−2

√
1−α

α . The function r(k; .) takes values
ρ(Lk) at α = 0, and 1 at α = 1 respectively.

3.3 Parallel-link graphs We now consider parallel-
link networks and obtain various improvements. We
obtain a simple proof showing that for any class of
latency functions L with PoA ρ(L), LLF reduces the
PoA to r(ρ(L), α) = α + (1−α)ρ(L). Thus, in parallel-
link graphs, the (worst-case) PoA always improves by
centrally controlling flow. We begin by giving a very
simple proof of the following result from [24].

Theorem 3.4. ([24]) In a parallel-link network, the
LLF strategy induces a flow of cost at most 1

α ·OPT.

Proof. Re-index the links in decreasing order of `e(oe),
their latency in the optimal flow o (breaking ties arbi-
trarily). Let k be the index of the highest index link
used by g, so Lg = `k(ok). Let L be the Nash latency.
We claim that L ≤ Lg. If not, then for all i ≥ k, we
have `i(gi + hi) ≥ L > Lg ≥ `i(oi) since all links have
latency at least L under the flow g + h. This implies
that gi + hi > oi for every i ≥ k. For i < k, gi = oi,
so this implies that the total (g + h) flow has volume
greater than 1, giving a contradiction.

The claim implies the following simple facts: (a) for
i ≤ k, `i(gi + hi) ≤ `i(oi) since `i(oi) ≥ Lg ≥ L for all
these links; (b) thus,

∑
i ge`e(ge + he) ≤ OPT ; and (c)

OPT ≥ αLg ≥ αL. Since the cost of h is (1−α)L, this
implies that C(g + h) ≤ OPT + (1−α)L ≤ 1

α ·OPT .

Theorem 3.5. In a parallel-link network, for any class
L of latency functions with PoA ρ(L), the PoA under
LLF is at most α + (1− α)ρ(L).

Proof. Let ρ = ρ(L). Let A =
∑

e ge`e(oe) and B =∑
e(oe − ge)`e(oe). Then, OPT = A + B and A/B ≥

α/(1−α). As argued in Theorem 3.4,
∑

e ge`e(ge+he) ≤
A, and by Lemma 3.1, we have

∑
e ge`e(ge +he) ≤ ρ ·B.
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Thus C(g + h) ≤ A + ρ ·B. The ratio C(g + h)/OPT is
maximized when A/B = α/(1 − α), and the maximum
value is at most α + (1− α)ρ.

The bound α + (1 − α)ρ is at most 1
α , for α ≤

min
(

1
ρ(L)−1 , 1

)
. Thus, when ρ(L) ≤ 2 (e.g., for linear,

quadratic, cubic latency functions), the bound in Theo-
rem 3.5 is always at most 1

α , and yields a tighter bound
on the PoA.

For linear latency functions, Roughgarden [24] ob-
tained a tighter bound on the PoA, but the proof in [24]
is tailored specifically for linear latencies and does not
extend to other latency classes. The proof above works
for any class of latency functions, and demonstrates that
Stackelberg strategies always improve the price of anar-
chy in parallel-link networks.

3.4 Extensions
Multicommodity networks. The PoA bounds ob-
tained above for the Scale strategy in Section 3.2 extend
to multicommodity (or asymmetric) nonatomic routing
games. Here the nonatomic users are divided into dif-
ferent types and the total flow volume of users of type
i is Di, which has to be routed from si to ti. Rough-
garden [23] defined two types of Stackelberg strategies
for multicommodity networks: weak Stackelberg strate-
gies, where the central authority controls αDi units of
flow for each user-type i, and strong Stackelberg strate-
gies, where the center controls an α fraction of the total
flow, i.e., it can control any amount βiDi flow of type
i provided that

∑
i βiDi ≤ α

∑
i Di. The Scale strategy

(which is well-defined even in the multicommodity set-
ting) is thus a weak strategy. Notice that nowhere in
the analysis of Scale in Section 3.2 do we use the fact
that we have a single-commodity network. Thus, the
analysis and the PoA bounds derived for Scale hold as
is even for multicommodity networks.

Combining Stackelberg strategies and tolls.
While Stackelberg strategies and tolls have till now been
considered separately, a natural question to consider is
whether combining these two measures yields any bene-
fits that are not achievable by either in isolation? There
are two issues of interest here: the cost of the resulting
flow, and the total toll paid by a user (along a flow path).
We observe that for any instance (G, `), by using the LLF

strategy in conjunction with tolls, we can enforce an op-
timal flow where the maximum toll paid by a user along
a flow path is bounded (in terms of OPT ). In contrast,
it is known that for arbitrary instances (G, `), Stackel-
berg strategies alone cannot reduce the PoA below 1

α
(see [23]), and without any flow control, the total toll
paid along a flow path may be unbounded (compared
to OPT ) [12] (although the optimal flow can always be

enforced [6, 29, 11, 15]).
A Stackelberg strategy g used in conjunction with

tolls τ = {τe} induces the flow g + h, where h is
the Nash flow with respect to the latencies ˆ̀

e(x) =
`e(x + ge) + τe. The above result follows from two
facts. (a) For any feasible flow f ′, there exists a flow
f ≤ f ′ that can be enforced via tolls [11]. (b) For
any flow f enforceable by tolls, there exist tolls that
enforce f such that the maximum toll paid by a user
is at most maxP∈P `P (f) [12]; a slight modification
of the proof shows that the maximum toll paid is at
most maxP :fP >0 `P (f). Thus, if g is the flow due to
the LLF strategy, then considering the instance (G, ˜̀),
where ˜̀

e(x) = `e(x + ge), one can enforce a flow
f ≤ o − g as the Nash flow, charging a toll of at most
maxP :(o−g)P >0

˜̀
P (o − g) ≤ 1

α · OPT to any user. Note
that the induced flow f + g ≤ o is also optimal.

4 Tolls for atomic splittable routing games

In this section, we consider the use of tolls for atomic
splittable routing games. We show that tolls that induce
an optimal flow always exist and can be efficiently
computed, and this is true even in general asymmetric
atomic routing games, where different atomic users may
have different source-sink pairs. We also give a complete
characterization of flows that can be induced via tolls.
Since Nash flows are not known to be unique for atomic
splittable routing games (even in general graphs with a
single source-sink pair), by inducing a flow F , we mean
that F can be realized as some atomic Nash equilibrium
via tolls. To our knowledge, this is the first result on
tolls for atomic splittable traffic. As mentioned in the
Introduction, except in some special cases implied by
the results of Cominetti et al. [7] and Hayrapetyan et
al. [13], even the existence of tolls inducing an optimal
flow was not known. (We remark that in these settings,
it is also the case that atomic Nash equilibria are unique;
Orda et al. [20] show this for parallel-link graphs, and [7]
show this for single-commodity, symmetric instances.)

We consider an asymmetric atomic splittable rout-
ing game (G, k, {Di}, `), where user i controls Di ≥ 0
units of flow which has to be routed from si to ti. The
users are heterogeneous, which means that the net la-
tency experienced by user i on edge e due to a toll τe,
is given by ˜̀

i,e(x) = γi`e(x) + τe, where γi ≥ 0 indi-
cates the sensitivity of user i to delay. Let Pi = Psiti

denote the set of all simple si-ti paths. Given a flow
f =

∑
i fi, where each fi is a feasible flow for user

i, define `∗i,e(x) = `e(x) + fi,e`
′
e(x); this represents

the marginal cost of increasing flow on edge e for user
i. Let ˜̀∗

i,e(x) = ˜̀
i,e(x) + fi,e

˜̀′
i,e(x) = γi`

∗
i,e(x) + τe.

The flows f1, . . . , fk will be clear from the context. As
usual, let `∗i,P (f) and ˜̀∗

i,P (f) denote
∑

e∈P `∗i,e(fe) and
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∑
e∈P

˜̀∗
i,e(fe). A flow is at Nash equilibrium if no user

can reduce the cost of its flow by rerouting any part of
it. The following characterization will be useful: a flow
profile (f1, . . . , fk), with f =

∑
i fi, is a Nash equilib-

rium (or Nash flow) under tolls {τe}, iff for each user i,
(a) fi is feasible, i.e., it routes Di units from si to ti,
and (b) for any two paths P, P ′ ∈ Pi with fi,P > 0, we
have ˜̀∗

i,P (f) ≤ ˜̀∗
i,P ′(f).

We say that a flow H is enforceable, if there
exist tolls {τe} such that H is realized as some Nash
equilibrium given these tolls. The proof approach is
similar to that in [11, 15]. We show that tolls (if
they exist) are obtained as the optimal Lagrangian
multipliers (or dual variables) to an appropriate convex
program (instead of a linear program). Consider the
following convex program:

min L(f) :=
∑

i

γi

∑
P∈Pi

`P (H)fi,P +

∑
i

γi

∑
e

`′e(He) ·
(
∑

P∈Pi:e∈P fi,P )2

2
(CPH)

s.t.
∑

i

∑
P∈Pi:e∈P

fi,P ≤ He for all e ∈ E, (4.1)

∑
P∈Pi

fi,P = Di for all i, (4.2)

fi,P ≥ 0 for all i, P ∈ Pi. (4.3)

The objective function of (CPH) is clearly convex,
so (CPH) is a convex program. Although (CPH)
has exponentially many variables, we can express it
compactly using flow-edge variables. Thus, (CPH)
can be solved efficiently up to an arbitrarily small
error. Observe that (CPH) is very similar to the linear
program used in [11, 15] to prove the existence of tolls
that enforce flow H in the nonatomic setting. The
only difference is in the objective function, which now
contains a non-linear term that appears due to the fact
that atomic users take into account the impact their
routing strategy on the flow that they control. Applying
the Kuhn-Karusch-Tucker (KKT) conditions for convex
optimization to (CPH), we get that (f1, . . . , fk) is an
optimal solution to (CPH) if it is feasible, and there
exist Lagrangian multipliers τe ≥ 0, zi, yi,P ≥ 0
corresponding to constraints (4.1), (4.2), and (4.3)
respectively, such that the following hold:

1. (Complementary Slackness) for every edge e,
τe

(∑
i

∑
P∈Pi:e∈P fi,P −He

)
= 0; for every i,

zi

(
Di −

∑
P∈Pi

fi,P

)
= 0; for every i and path

P ∈ Pi, −yi,P fi,P = 0.

2. (Zero Gradient)

∀i, P ∈ Pi,
∂

∂fi,P

[
L + τe

(∑
i

∑
P∈Pi:e∈P

fi,P −He

)
+

∑
i

zi

(
Di −

∑
P∈Pi

fi,P

)
−

∑
i,P∈Pi

yi,P fi,P

]
= 0

Simplifying, we get
∑

e∈P

(
γi(`e(He)+fi,e`

′
e(He))+

τe

)
− zi − yi,P = 0 for every i, P ∈ Pi, where

fi,e =
∑

P∈Pi:e∈P fi,P .

Theorem 4.1. A feasible flow H is enforceable if and
only if there is an optimal solution (f1, . . . , fk) to (CPH)
that satisfies all constraints (4.1) with equality.

Proof. First suppose that H is enforceable via tolls
{τe}. So H = f =

∑
i fi, where (f1, . . . , fk) is

an atomic Nash equilibrium induced by these tolls.
So for any path P ∈ Pi with fi,P > 0, the value∑

e∈P

(
γi(`e(fe) + fi,e`

′
e(fe)) + τe

)
must be the same,

and must be minimum among all paths P ′ ∈ Pi; set
zi equal to this value. Set yi,P =

∑
e∈P

(
γi(`e(fe) +

fi,e`
′
e(fe)) + τe

)
− zi. It is easy to verify that f , and

(τ, z, y) satisfy the KKT conditions (note that fe = He).
Since (f1, . . . , fk) is feasible for (CPH), it must be an
optimal solution, and it satisfies all constraints (4.1)
with equality.

Now suppose that there exists an optimal solution
(f1, . . . , fk) to (CPH) such that fe :=

∑
i fi,e = He

for every edge e. Then there must exist Lagrangian
multipliers (τ, z, y) satisfying the KKT conditions. For
any path P ∈ Pi with fi,P > 0, we must have γi,P = 0
by condition (iii). So by condition (iv), we have zi =∑

e∈P

(
γi(`e(He) + fi,e`

′
e(He)) + τe

)
. Also for any path

P ′ we have zi ≤
∑

e∈P

(
γi(`e(He) + fi,e`

′
e(He)) + τe

)
since yi,P ≥ 0. Thus (f1, . . . , fk) is an atomic Nash
equilibrium induced by the tolls {τe}, which implies that
H is enforceable.

Note that given an optimal solution (f1, . . . , fk) to
(CPH) that satisfies constraints(4.1) with equality, one
can obtain the corresponding tolls τe by solving the
following system of linear inequalities:

zi ≤
∑
e∈P

(
γi(`e(He) + fi,e`

′
e(He)) + τe

)
∀i, P ∈ Pi,

zi =
∑
e∈P

(
γi(`e(He) + fi,e`

′
e(He)) + τe

)
∀i, P : fP > 0,

τe ≥ 0 ∀e.

We can even optimize a linear (or convex) objective
function of the tolls. As in [11], one can show that
for any feasible flow H, one can obtain a flow H ′ ≤ H
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such that every feasible solution, and hence any optimal
solution, to (CPH′) must satisfy (4.1) with equality, and
hence, H ′ is enforceable. If H is an optimal solution
then so is H ′; thus, one can compute tolls enforcing an
optimal flow.

These results extend to the setting of mixed routing
games, where some users are atomic splittable users,
and some are nonatomic. The only change is that in
the objective function of (CPH), the nonlinear term
appears only for the atomic users. Our results also
extend to the setting of generalized atomic splittable
congestion games, where there are m resources with as-
sociated latency functions, and user i’s strategy con-
sists of choosing a fractional assignment (fi,1, . . . , fi,m)
of his volume Di to the m resources, incurring cost∑

j fi,j`j(
∑

i′ fi′,j).
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